
V,

FOCUSED SIMULATED ANNEALING
SEARCH: AN APPLICATION TO

JOB-SHOP SCHEDULING *

Norman M. Sadeh and Yoichiro Nakakuki t
CMU-RI-TR-94-29

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3891

September 1994

This do-.
*,,. •-.'
distribu'

19941227 093
"This research was supported, in part, by the Advanced Research Projects Agency under contract

F30602-91-C-0016 and, in part, by an industrial grant from NEC.
tThis research was carried out while the second author was a visiting scientist at Carnegie Mel-

Ion's Robotics Institute. His current address is: NEC C&C Research Laboratories, 4-1-1 Miyazaki,
Miyamae-ku, Kawasaki 216, JAPAN.

Abstract

This paper presents a simulated annealing search procedure developed to
solve job shop scheduling problems simultaneously subject to tardiness and in-
ventory costs. The procedure is shown to significantly increase schedule quality
compared to multiple combinations of dispatch rules and release policies, though
at the expense of intense computational efforts. A meta-heuristic procedure is
developed that aims at increasing the efficiency of simulated annealing by dy-
namically inflating the costs associated with major inefficiencies in the current
solution. Three different variations of this procedure are considered. One of
these variations is shown to yield significant reductions in computation time, es-
pecially on problems where search is more likely to get trapped in local minima.
We analyze why this variation of the meta-heuristic is more effective than the

others.

i

M

1 Introduction

Over the past several years, with the advent of ever more powerful computers, stochas-

tic procedures such as Simulated Annealing (SA) [14, 2] (and improved variations

exploiting Tabu Search principles [9, 10]) or Genetic Algorithms (GAs) [11] have at-

tracted the attention of a growing number of researchers. This interest has been fueled

by both experimental and theoretical results indicating that, if properly designed and if

given enough time, these procedures are often capable of finding near-optimal solutions

to complex optimization problems.

This paper presents results obtained using SA to find solutions to job shop schedul-

ing problems where the objective is to minimize the sum of weighted tardiness and

inventory costs (both work-in-process inventory and finished-goods inventory costs).

The model is particularly attractive as it is compatible with the Just-In-Time objective

of meeting customer demand in a timely yet cost-effective manner. In the scheduling

literature, this objective function is known to be irregular, as its value may sometimes

be decreased by delaying the execution of some operations [3]. As will be shown, this

property needs to be taken into account in the design of SA procedures for this class

of problems.

By reference to simpler problems (e.g. the one machine version of this problem),

this problem can easily be shown to be NP-hard [5, 6, 22, 23]. Surprisingly enough,

despite the "attractiveness" of its modeling assumptions, this problem has been given

very little attention in the literature. Two notable exceptions are the work of Tom

Morton on resource-pricing heuristics in the context of the Sched-Star system [17] and

our earlier work on micro-opportunistic bottleneck-centered techniques in the context

of the Micro-Boss factory scheduling system [24].

The first part of this paper presents a SA procedure developed to solve job shop

scheduling problems subject to both tardiness and inventory costs. Experimental re-

sults are presented comparing the performance of our procedure with that of several

other scheduling heuristics. The results corroborate earlier studies performed on other

combinatorial optimization problems. They indicate that SA consistently produces

high quality solutions, often significantly outperforming other scheduling heuristics,

though at the expense of intensive computational efforts. In the second part of this pa-

per, we introduce "Focused Simulated Annealing" (FSA), a meta-heuristic procedure

that aims at improving the efficiency of SA search. The idea behind FSA is that by

dynamically inflating the costs associated with major inefficiencies in the existing so-

lution, it is possible to focus the procedure and force it to get rid of these inefficiencies.

By iteratively inflating costs in different subproblems, FSA can reduce the chances that

the procedure gets trapped in local minima. Three variations of this meta-heuristic are

considered that differ in the type of subproblems they rely on: job subproblems, re-

source subproblems, or operation subproblems. Experimental results comparing these

three variations of the meta-heuristic against the original SA procedure show that the

job-based meta-heuristic significantly improves performance, especially on problems

where search is particularly likely to get caught in local minima. We further analyze

why this variation of the meta-heuristic is more effective than the others, trying to

shed some light on why, in general, some decompositions are likely to work better than

others for a given SA procedure.

The balance of this paper is organized as follows. Section 2 provides a formal defi-

nition of the job shop scheduling problem considered in this study. Section 3 presents a

SA search procedure developed for this problem. Section 4 reports experimental results

comparing the performance of the procedure against that of other scheduling heuris-

tics. The concept of Focused Simulated Annealing is introduced in Section 5 and three

variations of this meta-heuristic procedure are developed for the job shop scheduling

problem with tardiness and inventory costs. Performance of these meta-heuristics is

reported in Section 6. These results are further discussed and analyzed in Section 7.

Section 8 presents some concluding remarks.

2 The Job Shop Scheduling Problem with Tardiness and In-
ventory Costs

We consider a factory, in which a finite set of jobs, J = {J1J2, ••• ,jn}, has to be

scheduled on a finite set of resources, RES = {Rlf R2, ■ ■ ■, Rm). The jobs are assumed

to be known ahead of time and all resources are assumed to be available over the entire

scheduling horizon. Each job ji requires performing a set of manufacturing operations

Ol = {0[,Ol
2,---O

l
nt} and, ideally, should be completed by a specific due date, dd\,

for delivery to a customer. Precedence constraints specify a complete order in which

operations in each job have to be performed. By convention, we assume that operation

0\ has to be completed before operation 0\+1 can start (i = 1,2, • • •, n\ - 1).

Each job ji has an earliest acceptable release date, erdh before which it cannot start,

e.g. because the raw materials or components required by this job cannot be delivered

before that date. Each job also has a latest acceptable completion date (or deadline),

lcdh by which it should absolutely be completed, e.g. because the customer would

otherwise refuse delivery of the order. For each job, we assume that erdi < ddi < lcd\.

Furthermore, we assume that these constraints are loose enough to always allow for

the construction of a feasible schedule (i.e. we are not concerned with the detection of

infeasible problems).

This paper considers problems in which each operation 0\ requires a single resource

R[€ RES and the order in which a job visits different resources varies from one

job to another. Each resource can only process one operation at a time and is non-

preemptable. The duration du\ of each operation 0\ is assumed to be known.

The problem requires finding a schedule (i.e. a set of start times, st\, for all op-

erations, 0\) that satisfies all these constraints while minimizing the sum of tardiness

costs and inventory costs of all the jobs.

Specifically, each job ji incurs a positive marginal tardiness cost tardi for each

unit of time that it finishes past its due date ddi. Marginal tardiness costs generally

correspond to tardiness penalties, interests on lost profits, loss of customer goodwill,

etc. The total tardiness cost of job jh in a given schedule, is measured as: TARD =

tardi • MAX(0, C\ - ddi) where C\ is the completion date of job jt. That is Ci =

stlni + dul
ni, where 0l

ni is the last operation of j\.

Inventory costs on the other hand can be introduced at the level of any operation

in a job. In our model, each operation 0\ can have its own non-negative marginal

inventory cost, in\. This is the marginal cost that is incurred for each unit of time

that spans between the start time of this operation and either the completion date of

the job or its due date, whichever is larger. In other words, the total inventory cost

introduced by an operation 0\ in a given schedule is:

INVf = in\ ■ (MAX(Chdd,) - st1^

Typically, the first operation in a job introduces marginal inventory costs that corre-

spond to interests on the costs of raw materials, interests on processing costs (for that

first operation), and marginal holding costs. Following operations introduce additional

inventory costs such as interests on processing costs, interests on the costs of additional

raw materials or components required by these operations, etc. Additional details on

this model can be found in [23, 24].

The total cost of a schedule is:
ni

For reasons that will become clearer in Section 5, it is often useful to look at the

total tardiness and inventory costs of a job as sums of tardiness and inventory costs

introduced by each of the operations in the job. For each operation O], we can define

a best start time (or "just-in-time" start time), bst\, where:

, _ J ddi- du\ {% = ni)
bSti ~ \ bsti+1 - du\ (1 < « < ni)

Accordingly, the tardiness cost TARD1 of job jt in a given schedule, can be rewritten

as. JJJ

TARD1 = £ tcost\

where,

tcost1;
{ tardi ■ MAX(0, st\ - bst\) (* = 1)

tardi • {MAX{0, st't - 6s*{) - MAX(0, st1^ - bst1^)} (1< i < n,)
iardx ■ {MAX(0, Ci - ddi) - MAX(0, st1^ - bst1^)} (i = nt)

tcost'i can be seen as the contribution of operation 0\ to the total tardiness cost of job

31. Similarly, the total inventory cost of a job ji can be rewritten as:

ni

INV1 = Y,icost\
t=l

where:

rm,i ■ 4 S invl-iMAXistl + du^dd^-st'i) (i = n,)
INVl = zcost, = | .nvi. {sA+i _ at|) (1 < { < ni)

and inv\ = ELi "**• Accordingly, the total cost of a schedule can also be expressed

as: ni

£ TARD1 + £ INV1 = E E (<cost\ + icostli)
lej ieJ ieJ «=i

For the sake of simplicity, the remainder of this paper further assumes that time

is discrete, i.e. that job due dates/earliest acceptable release dates/latest acceptable

completion dates and operation durations can only can only take integer values.

The following section introduces a SA procedure developed for this problem.

3 A Simulated Annealing Procedure

Simulated Annealing (SA) is a general-purpose search procedure that generalizes iter-

ative improvement approaches to combinatorial optimization by sometimes accepting

transitions to lower quality solutions so as to avoid getting trapped in local minima

[14, 2]. SA procedures have been successfully applied to a variety of combinatorial op-

timization problems, including Traveling Salesman Problems [2], Graph Partitioning

Problems [12], Graph Coloring Problems [13], Vehicle Routing Problems [21], Design

of Integrated Circuits, Minimum Makespan Flow-Shop Scheduling Problems [20], Min-

imum Makespan Job Shop Scheduling Problems [16, 26], etc.

T = T0;
x = x0 (e S);
BestSol = x0; M = cost(BestSol);
while (T>T1) {

fori = l,N {
x' = neighbor(x);
if (cost(x') < cost(x)) {

if (cost(x') < M) {BestSol = x'; M = cost(BestSol); }

else if (randQ < exp{(cost(x) - cost(x'))/T}) x = x';

if (M was not modified in the above loop) T = T * a;

Fig. 1 Pseudo-code for a Basic SA Search Procedure.

Figure 1 outlines the main steps of a SA search procedure designed to find a

solution x e S that minimizes a real-valued cost function, cost(x). The procedure

starts from an initial solution x0 and iteratively moves to other neighboring solutions,

while remembering the best solution found so far (BestSol). Typically, the procedure

only moves to neighboring solutions that are better than the current one. However,

the probability of moving from a solution x to an inferior solution x' is greater than

zero, thereby allowing the procedure to escape from local minima. randQ is a function

that randomly draws a number from a uniform distribution on the interval [0,1]. The

so-called temperature, T, of the procedure is a parameter controlling the probability of

accepting a transition to a lower quality solution. It is initially set to a high value, T0,

thereby frequently allowing such transitions. If, after N iterations, the best solution

found by the procedure has not improved, the temperature parameter T is decremented

by a factor a (0 < a < 1). When the temperature drops below a preset level, 2\, the

procedure stops and the best solution it found (BestSol) is returned (not shown in the

pseudo-code in Figure 1).

As indicated earlier, procedures similar to the one outlined above have been suc-

cessfully applied to other scheduling problems such as the minimum makespan job-shop

scheduling problem 1. When dealing with regular scheduling objectives such as min-

imum makespan, it is possible to limit search to permutations of operations on the

same machine. For instance, in their SA procedure, Van Laarhoven et al. exploit this

observation and restrict the neighborhood structure to permutations of consecutive

operations on a same machine [26]. In the case of scheduling problems with irregular

objectives, such a neighborhood structure would not be sufficient, as it does not allow

for the insertion of idle-time in the schedule, which sometimes improves the quality of

a solution 2. Here, two main approaches can be considered. A first approach would

be to combine a SA procedure relying on permutation-based neighborhoods with a

procedure that inserts idle-time optimally. As it turns out, the problem of inserting

idle time optimally in a schedule, given completely specified sequences of operations on

each machine, can be formulated as a Linear Programming (LP) problem and, hence,

can be solved in polynomial time (See Appendix A for details). When considering

the permutation of two operations, the SA procedure would first invoke an idle-time

insertion procedure to compute the cost of the best schedule compatible with the new

set of sequencing decisions. Based on this cost and the cost of the current solution,

the search procedure would probabilistically determine whether or not to accept the

transition. Nevertheless, at the present time, the idle time insertion procedures that

the authors are aware of for the job shop scheduling problem remain too slow and

!The makespan of a schedule is the length of the time interval that spans between the start time
of the first released job and the end time of the last completed job.

Scheduling problems with regular objective functions have been shown to be reducible to sequenc-
ing problems [1]. Given fixed operation sequences on each machine, the schedule obtained by starting
each operation as early as possible is undominated. With irregular objectives, this is no longer the
case and it is sometimes better to delay the start of some operations. Here, we generically refer to
the problem of deciding by how much to delay operations as the problem of "inserting idle time" in

the schedule.

would significantly limit the number of solutions that SA could explore in a reasonable

amount of time 3.

Instead, an alternative neighborhood structure was adopted that directly allows

for idle time insertion. This structure, which is described below, lends itself to quick

updates of the cost function. A possibly more subjective advantage has to do with the

fact that the resulting procedure relies solely on SA and hence is not affected by the

performance of a separate idle time insertion procedure. Specifically, the neighborhood

function used in our implementation randomly selects among three types of modifica-

tion operators, respectively referred to below as "RIGHT-SHIFT", "LEFT-SHIFT"

and "EXCHANGE":

RIGHT-SHIFT This operator randomly chooses a "right-shiftable" operation and

increases its start time by one time unit (Figure 2-(a)). An operation is assumed to be

"right-shiftable", if it can be shifted by one time unit without bumping into another

operation on the same resource or violating the latest acceptable completion date of

the job to which it belongs (Figure 2-(b)). Precedence constraints within a job are

ignored when determining whether or not an operation can be right-shifted. Instead,

as will be seen later, these constraint violations are taken care of by inserting artificial

costs in the objective function.

Resource R Resource R

or

Resource R

t+1

(a) SHIFT-RIGHT

Resource R

led,

(b) not shiftable

Fig. 2 RIGHT-SHIFT operator
3For instance, using the CPLEX Linear Programming package on a DECstation 5000/200, inserting

idle time optimally in a 100 operation job shop schedule takes about 1 CPU second. Taking into
account similarities between the current schedule and the schedule obtained after permuting the order
of two operations on the same resource, it is generally possible to reduce the time required to re-
optimize the schedule to about 0.1 to 0.2 CPU seconds. Even under these conditions, a SA run of
about 10 minutes would only be able to explore a few thousand solutions.

LEFT-SHIFT This operator is the mirror image of RIGHT-SHIFT. It randomly

picks a "left-shiftable" operation and decreases its start time by one time unit (Figure

3-(a)). It is assumed that an operation cannot be shifted left, if it would either bump

into an adjacent operation on the same resource (top case in Figure 3-(b)) or violate

the earliest acceptable release date of the job to which it belongs (bottom case in Figure

3-(b)).

Resource R Resource R

or

Resource R Resource R

t-1

(a) SHIFT-LEFT

erd,

(b) not shiftable

Fig. 3 LEFT-SHIFT operator

EXCHANGE This operator selects a pair of consecutive operations on a resource

and exchanges the order in which the operations are scheduled to be processed on that

resource. Specifically, given two consecutive operations, A and B on a resource R, with

A preceding B in the current solution, the exchange operator sets the new start time

of B to the old start time of A and the new end time of A to the old end time of B,

as depicted in Figure 4.

Resource R

Resource R

♦

Fig. 4 EXCHANGE operator

In the experiments presented in this paper, the probability of picking the EX-

CHANGE operator was empirically set to 3/7 while the probabilities of picking a

RIGHT- or LEFT-SHIFT operator were both set to 2/7. The initial solution x0 used

by the SA procedure is randomly generated in such a way that no two operations use

the same resource at the same time. As with the RIGHT- and LEFT-SHIFT opera-

tor, precedence constraints between consecutive operations within a same job are not

enforced in the process. Instead these constraints are enforced using artificial costs. If

an operation 0\ overlaps with a preceding operation 0_x (within the same job _;'/), an

artificial cost fcost\ is introduced in the objective function:

ni

cost(x) = 5ZX1 (/cos*! + tcost'i + icost'i)

where fcosti is proportional to the amount of overlap between 0\ and its predecessor

0_v Specifically:

fcost[= 0

fcost\ = ß ■ roas(M*'-i + du\-\ ~ st\) (* > 2)

where ß is a large positive constant.

The next section summarizes the results of experiments comparing this basic SA

procedure with several other scheduling heuristics.

4 A First Set of Empirical Results

Performance of this first SA procedure was assessed through comparative studies

against a number of other scheduling heuristics. This section summarizes the results

of experiments comparing the SA procedure against 39 combinations of well-regarded

dispatch rules and release policies (including those combinations that were reported to

perform best in the evaluation of the Sched-Star scheduling system [17]) both with and

without idle-time optimization, using the LP formulation provided in Appendix A.

Specifically, two types of dispatch rules were considered:

1. A set of five priority dispatch rules that have been reported to be particularly

good at reducing tardiness under various scheduling conditions [27]: the Weighted

Shortest Processing Time (WSPT) rule, the Earliest Due Date (EDD) rule, the

Slack per Remaining Processing Time (SRPT) rule, and two parametric rules,

the Weighted Cost OVER Time (WCOVERT) rule and the Apparent Tardiness

Cost (ATC) rule (also referred to sometimes as the Rachamadugu&Morton rule

[18]).

2. An exponential version of the parametric early/tardy dispatch rule recently de-

veloped by Ow and Morton [22, 17] and referred to below as EXP-ET. This rule

differs from the other 5 in that it can explicitly account for both tardiness and

inventory costs.

EXP-ET was successively run in combination with two release policies: an intrinsic

release policy that only releases jobs when their priorities become positive, as sug-

gested in [17], and an immediate release policy (IM-REL) that allowed each job to

be relased immediately. The other five dispatch rules were also successively run in

combination with two release policies: an immediate release policy and the Average

Queue Time release policy (AQT) described in [17]. AQT is a parametric release policy

that estimates queuing time as a multiple of the average job duration (the look-ahead

parameter serving as the multiple). A job's release date is determined by offsetting the

due date of the job by the sum of its total duration and its estimated queuing time.

In their evaluation of the SCHED-STAR scheduling system, Morton et al. report that

the combination of WCOVERT and AQT performed best after their SCHED-STAR

system and was within 0.1% of the best schedule in 42% of the problems they studied

and within 4% in 70% of their problems [17]. They also report that the next best

scheduling heuristic is EXP-ET in combination with its intrinsic release policy.

Combinations of release policies and dispatch rules with a look-ahead parameter

were successively run with four different parameter values that had been identified as

producing the best results. By combining these different dispatch rules, release policies

and parameter settings a total of 39 heuristics4 was obtained.

These 39 combinations of priority dispatch rules and release policies were run in

two different ways:

1. On each problem, the best of the 39 schedules produced by these combinations

was recorded. In this case, out of the 39 combinations, 13 performed best on

at least one of the 40 problems considered in the study. These 13 combinations

included 5 of the 6 dispatch rules (SRPT was never best on this set of problems)

and all 3 release policies.

4The 39 combinations were as follows: EXP-ET and its intrinsic policy (times four parameter
settings), EXP-ET/IM-REL (times four parameter settings), EDD/AQT (times four parameter set-
tings), EDD/IM-REL, WSPT/AQT (times four parameter settings), WSPT/IM-REL, SRPT/AQT
(times four parameter settings), SRPT/IM-REL, WCOVERT/IM-REL (times four parameter set-
tings), WCOVERT/AQT (times four parameter settings), ATC/IM-REL (times four parameter set-
tings), ATC/AQT (times four parameter settings).

10

2. On each problem, each of the 39 schedules obtained by these combinations was

post-processed using an LP program to insert idle time optimally. Again, on each

problem, the best of the 39 post-processed schedules was recorded for comparison

against the SA procedure. In this case, out of the 39 combinations, 11 performed

best (after post-processing) on at least one of the 40 problems considered in the

study. These 11 combinations included 5 of the 6 dispatch rules (here, WSPT

was never best) and all 3 release policies.

Table 1 Characteristics of the eight problem sets

Problem Set Number of Bottlenecks Avg. Due Date Due Date Range

1 1 loose wide
2 1 loose narrow
3 1 tight wide
4 1 tight narrow
5 2 loose wide
6 2 loose narrow
7 2 tight wide
8 2 tight narrow

The results reported below were obtained on a suite of 40 scheduling problems

similar to the ones described in [24]. The series consisted of eight sets of scheduling

problems obtained by adjusting three parameters to cover a wide range of scheduling

conditions (See Table 1): an average due date parameter (tight versus loose average

due date), a due date range parameter (narrow versus wide range of due dates), and a

parameter controlling the number of major bottlenecks (in this case one or two). For

each parameter combination, a set of 5 scheduling problems was randomly generated,

thereby resulting in a total of 40 problems (5 problems x 2 average due date values x

2 due date ranges x 2 bottleneck configurations). Each problem involved 20 jobs and

5 resources for a total of 100 operations. Marginal tardiness costs in these problems

were set to be, on average, ten times larger than marginal inventory costs to model a

situation where tardiness costs dominate but inventory costs are non-negligible5.

The SA procedure was run 10 times on each problem. For each problem, we recorded

both the average performance of the procedure (referred to below as SA-AVG) as well

as the best solution it found for each problem over 10 runs (SA-BEST) . In each run,

5Similar results have also been obtained on a set of problems where marginal tardiness costs were
on average five times larger than marginal inventory costs.

11

the initial temperature, To, was set to 700, temperature T\ was 6.25 and the cooling

rate a was 0.85. The value of ß was 1000 6. The number N of iterations in the

inner-loop of the procedure (See Figure 1) was set to 300,000.

25000

4 5

Problem Sei

G Combination of 39 ■ Combination of 39 ■ SA-AVG (over 10 D SA-BEST(over10
priority dispatch rules priority dispatch rules runs) runs)
and release policies and release policies
(recording the best with idle time
of 39 schedules on optimization (i.e. on
each problem) each problem, all 39

schedules are post-
processed and the
best post-processed
schedule is recorded)

Fig. 5: Comparison of SA and a combination of 39 dispatch rules and

release policies with and without optimal idle time insertion.

Figure 5 compares the schedules produced by the SA procedure with the best
6The problems that were run typically had optimal solutions with a value ranging between 3000

and 15000. Setting ß to 1000 was sufficient to guarantee that all precedence constraints were satisfied
at the end of each run.

12

schedules obtained on each problem by the 39 combinations of dispatch rules and release

policies both with and without idle time optimization. For instance, on Problem Set 6

(problems with two bottleneck resources, loose average due dates and narrow due date

ranges), (1) SA-BEST reduced schedule cost by almost 11% compared to SA-AVG,

(2) SA-AVG reduced schedule cost by about 18% compared to the 39 combinations of

dispatch rules and release policies with optimal idle time insertion and (3) performance

of the 39 combinations of dispatch rules and release policies (taking the best of 39

schedules on each problem) improves by more than 6% with optimal idle time insertion.

Overall, Figure 5 indicates that SA-BEST consistently outperforms the combina-

tions of dispatch rules and release policies with and without idle time insertion on all

8 problem sets. The comparison also holds for SA-AVG with the exception of the two

easier problem sets (Problem Set 1 and 5, i.e. problems with loose and widely spread

due dates), where SA-AVG does slightly worse than the 39 combinations with idle time

optimization. Notice that SA-AVG still outperforms the 39 combinations without idle

time optimization on these two problem sets. Overall, compared against the 39 combi-

nations of dispatch rules and release policies without idle time optimization, SA-AVG

reduced schedule cost by close to 16% and SA-BEST by close to 28%. Even when, on

each problem, idle time was optimally inserted in each of the 39 schedules obtained by

the combinations of dispatch rules and release policies, SA-AVG still reduced schedule

cost by an average of about 7% and SA-BEST by over 20%. A more detailed analysis

indicates that these reductions in schedule cost reflect reductions in both tardiness

and inventory costs. However, while running all 39 combinations of dispatch rules and

release policies requires only a few CPU seconds on each problem and about 45 to 50

CPU seconds when idle time is optimally inserted in each of the 39 schedules, a SA

13

run takes 3 to 5 minutes on a DECstation 5000/200 running C.

20000

18000

16000

D SA-AVG (over
10 runs)

■ SA-AVG with ■ SA-BEST (over 11 SA-BEST with
idle time 10 runs) idle time
optimization optimization
(over 10 runs) (over 10 runs)

Fig. 6 Performance of the SA procedure with and without idle time

optimization.

Additional experiments were also conducted to evaluate the performance of the

SA procedure with respect to idle time optimization. Figure 6 summarizes these

experiments, reporting both the average and best performance of the SA procedure

over 10 runs with and without post-processing for optimal idle time insertion. The

results clearly indicate that the schedules produced by the SA procedure are nearly

14

optimal with respect to idle time insertion, thereby validating the choice of the LEFT-

and RIGHT-SHIFT operators used to define the neighborhood of the procedure. On

average, idle time insertion improved performance of SA-BEST by a meager 0.94%

(with a standard deviation of 0.8%) and that of SA-AVG by 1.02% (with a standard

deviation of 0.5%).
The results in Figure 5 and 6 generally attest to the ability of the SA procedure

to produce high quality solutions, often significantly reducing schedule cost compared

to other well-regarded scheduling heuristics. They also indicate that the computa-

tional requirements of the procedure are quite large compared to these other heuristics,

though experiments with larger problems suggest that the average complexity of our

SA procedure only grows linearly with the size of the problem.

Finally, we observe that the performance of the SA procedure can significantly vary

from one run to another, as illustrated by the results in Figure 5. In our experiments,

an average run of SA produced schedules with costs 14% higher than those of the best

schedule obtained over 10 runs (SA-AVG vs. SA-BEST). This suggests that important

speedups could possibly be obtained if the procedure was more consistent in producing

high quality solutions. In the following section, a meta-heuristic procedure is presented

that aims at reducing performance variability using artificial costs to dynamically focus

the SA procedure on critical subproblems.

5 Focused Simulated Annealing Search

Figure 7 depicts 5 typical runs of the SA procedure introduced in the previous sections,

plotting the cost of the best schedule found in each run, as the the temperature is slowly

15

lowered over time.

Cost
i I

25000-

20000-

15000-

200 100
-i—

50
-1—

25
->-Temp.

12.5 6.25

Fig. 7 Solution improvement in 5 runs of SA.

The behavior exhibited in Figure 7 is characteristic of SA search procedures: the

largest improvements are observed at relatively high temperatures. In the case of

our SA procedure, we observed that below T = 50 the quality of the solution never

improved by more than a few percent. In other words, the early stage of the procedure

is the one that determines whether or not the procedure will get trapped in a local

minimum (e.g. See run A in Figure 7). The remainder of this section describes a

meta-heuristic that relies on the dynamic introduction of artificial costs in the objective

function to focus SA on critical subproblems and attempt to steer clear of local minima

during the high temperature phase of the procedure. Below we refer to the resulting

procedure as "Focused Simulated Annealing" (FSA) search.

To improve the quality of an existing solution, FSA iteratively identifies major

inefficiencies in the current solution and attempts to make these inefficiencies more

obvious to the search procedure by artificially inflating their costs. As a result, the

search procedure works harder on getting rid of these inefficiencies, possibly introducing

new inefficiencies in the process. By regularly tracking sources of inefficiency in the

existing solution and reconfiguring the cost function to eliminate these inefficiencies,

FSA can increase the chances that the procedure finds a high quality solution.

16

T = T0;
x = x0 (e S);
BestSol = x0; M = cost(BestSol);
while (r>Ti) {

if (r > r2)
CritSubp = identify-high-cost-subp (x);

else
CritSubp = 0;

fori = l,N {
x' = neighbor(x);
if (costl (x') < costl(x)) x = x';
else if (randQ < exp{(cost 1 (x) - costl (x'))/T}) x = x';
if (cost(x') < M) {BestSol = x'; M = cost(BestSol);}

}
if (M was not modified in the above loop) T = T * a;

}

Fig. 8 The FSA Procedure: A meta-heuristic that continuously attempts

to reduce major inefficiencies in the solution.

Pseudo-code for the FSA procedure is given in Figure 8. T2 is a threshold temper-

ature between T0 and 2\. Below T2, FSA behaves exactly as the SA search procedure

described in Figure 1. Before reaching this temperature, the procedure uses a different

cost function to decide whether or not to accept transitions to neighboring solutions,

namely:

costl(x) = cost(x) + ArtifCost(x)

where:

ArtifCost(x) = J2 {k(tcost\ + icost\)}
OJG CritSubp

or, equivalently:

costl (x) = Y^ E {fcostli + tcostli + icostb+ £ {k{tcost\ + icost\)}
leJl<i<nt OleCritSubp

& is a parameter that controls the amount by which the costs associated with

operations in critical subproblems are inflated. In our experiments, we found that

setting A: to 2 and T2 to 50 generally yielded good results. Results obtained with other

values for these parameters are provided in Appendix B.

17

Notice that inflating the costs associated with one or several subproblems is equiv-

alent to reducing the temperature associated with the corresponding components of

the objective function (or raising the temperature in the remainder of the problem).

Accordingly, FSA can be viewed as a SA procedure in which transition probabilities

are subject to different temperatures in different parts of the problem. Temperatures

in different subproblems are regularly modified (lowered or raised) to get rid of ma-

jor inefficiencies in one part or another of the working solution. In this regard, FSA

is reminiscent of the Strategic Oscillation idea of developing non-monotonic cooling

schedules [7, 21, 10]. However, while Strategic Oscillation cooling schedules proposed

in the literature vary temperature in the entire problem, FSA emphasizes selective

temperature variations in dynamically identified subproblems, as detailed below.

The specific parts of the solution in which FSA attempts to eliminate inefficiencies

are determined by the identify-high-cost-subp() function. Here several variations of

the procedure are considered that differ in the way they decompose the problem: a

job-based variation, a resource-based variation and an operation-based variation.

"Critical Job" (CJ) variation This variation of FSA dynamically inflates the costs

associated with critical jobs. Here, identify-high-cost-subp() computes the the cost of

each job ji in the current schedule, namely,

y^ (tcost\ + icostl)
l<{<n;

. The function then returns the set of all jobs whose costs are above p • CLVR , where

avn is the average cost of a job in the current schedule and p is a constant. In the

experiments reported below, p was empirically set to 3. Below we refer to this variation

of the procedure as FSA(CJ). Results obtained with other values of p are also reported

in Appendix B.

"Bottleneck Resource" (BR) variation This variation of FSA inflates the costs

associated with critical ("bottleneck") resources in the existing schedule. This is done

by computing a cost for each resource Rk'-

y^ (tcost\ + icost\)
R\=Rk

In this case, the highest cost resource is selected and all the operations requiring this

resource are returned by identify-high-cost-subp(). This procedure will be referred to

18

as FSA{BR).

"Critical Operation" (CO) variation Here, FSA focuses on critical operations

rather than critical jobs or critical resources. The average cost of an operation in the

current schedule, avo, is computed:

avo = YL Y, (tcosi\ + icostli)/J2 ni
ieji<i<rn leJ

All the operations with a cost above q ■ av0 are considered critical, q is a constant.

In the experiments reported below, q was equal to 3. We will denote this procedure

FSA{CO). Results obtained with other values of q are also reported in Appendix B.

6 Performance Evaluation

To evaluate the effectiveness of FSA, all three variations of the procedure were run on a

set of 40 scheduling problems similar to the ones described in Section 4. Each variation

was run 10 times on each problem. Table 2 compares each of the three variations of

the FSA procedure against the SA procedure described in Section 3. Both the average

and best performance over 10 runs are reported.

Table 2 Cost Reduction (%) obtained by FSA over SA

Problem
Set

FSA(CJ) FSA(BR) FSA (CO)
Avg Best Avg Best Avg Best

1 4.5 2.0 -0.8 0.9 -0.6 -0.6

2 6.5 5.1 4.3 2.3 3.5 4.3

3 7.3 5.2 -1.2 -2.6 -0.9 -2.3

4 0.4 0.2 -2.4 -2.2 -2.1 -2.2

5 8.6 4.5 -9.4 -1.7 1.9 3.2

6 8.0 2.4 -2.8 -4.3 2.3 4.2

7 6.7 6.2 -25.2 -6.3 -2.4 0.4

8 0.2 3.5 -2.7 -0.5 -2.1 0.7

Overall 5.2 3.6 -5.0 -2.0 -0.5 0.9

The results in Table 2 show that the dynamic introduction of artificial costs, as

implemented in the FSA procedure, can potentially lead to significant improvements

both in the average and best performance of the SA procedure. The results also show

that the effectiveness of this approach depends on the type of subproblems considered

19

by the procedure. While FSA(CJ) reduced schedule cost by an average of 5.2% and

improved the quality of the best schedule found in 10 runs by an average of 3.6%, the

other two variations of the procedure, FSA(BR) and FSA(CO), did not fare as well.

FSA(CO) performed approximately like the original SA procedure and FSA(BR) actu-

ally did worse. Below, we further analyze the performance improvement obtained with

FSA(CJ). In the following section, we attempt to explain why FSA(CO) and FSA(BR)

did not perform as well. For now, we further analyze the performance improvements

observed with FSA(CJ).

Figure 9 and 10 show the cost distributions of the schedules obtained by succes-

sively running SA and FSA(CJ) 300 times on two typical scheduling problems.

frequency

av=9790

cost
S000 7500 10000 12500

Simple SA

15000

frequency

5000 7500 10000 12500

FSA (CJ)

—I ►■ cost
15000

Fig. 9 Improvement of FSA(CJ) over the original SA procedure (Problem

1)

On the problem in Figure 9, the improvement obtained with FSA(CJ) is quite

obvious: both the average and standard deviation of the cost distribution produced by

20

FSA(CJ) are lower than those of the original SA procedure. Accordingly, it appears

that for this problem the probability of getting trapped in a local optimum has been

greatly reduced. This in turn can translate in significant reductions in computation

time. For instance, while the original SA procedure would require an average of 2.5

runs to find a schedule with cost below 9000, FSA(CJ) would only require an average

of 1.1 run, a saving of more than 50%. To find a schedule of cost below 8000, FSA(CJ)

reduces computation time by more than 90%.

frequency

av=16128

40-

20

10000 15000 20000 25000
—I *• cost
30000

Simple SA
frequency

40-

20-

av=15772

 13 MfciL. 1 | iiinmi | ■i — -*■ cost
10000 15000 20000 25000

FSA (CJ)

30000

Fig. 10 Improvement of FSA(CJ) over the original SA procedure

(Problem 2)

On the other hand, for the problem in Figure 10, the performance improvement

yielded by FSA(CJ) is rather modest: no significant reduction in average schedule cost

or even in the standard deviation of the distribution.

Looking more carefully at these two problems, we observe that, in the case of the

problem in Figure 9, SA yields a cost distribution with two clearly separated peaks,

21

thereby suggesting that the procedure is often caught in local minima. In contrast, in

the case of the problem analyzed in Figure 10, the cost distribution obtained using the

original SA procedure is generally more compact. This would suggest that FSA(CJ)

is more effective in those situations where the original procedure is more likely to get

trapped in local optima.

To verify this hypothesis, we measure for each problem the average reduction in

schedule cost yielded by FSA(CJ) (compared to the original SA procedure) and the

spread of the cost distribution obtained with the original SA procedure. This spread

is simply measured as the standard deviation of the cost distribution obtained by SA

divided by the mean of this distribution. The results for all 40 problems of the study

are summarized in Figure 11.

Improvement (%)

20

15-

10

5-

0.05 0.1 0.15 0.2 0.25
Deviation (sd/av)

Fig. 11 Improvements obtained with FSA(CJ) as a function of the relative

variation in schedule cost observed when using the original SA procedure.

The graph clearly confirms our intuition. The most important improvements are

observed on problems where the original SA procedure showed the least consistency,

namely those problems where it had the highest chance of getting trapped in local min-

ima. The Figure also indicates that FSA(CJ) rarely performs worse than the original

SA procedure, and, when it does, the degradation in schedule quality is marginal.

22

7 Further Analysis

If we are to apply FS A to other problems, we need to understand why some variations of

the procedure perform better than others. There are at least two ways of approaching

this question. One approach is to attempt to analyze the search procedure and the

neighborhood structure it relies on and try to understand how the choice of a given type

of subproblems influences the effectiveness of FSA on this specific class of scheduling

problems. This approach is probably the one a scheduling expert would be tempted to

follow. It could potentially lead to very insightful conclusions for the class of scheduling

problems of interest in this study. However, our purpose here is different, as we are

looking for insight that can possibly carry over to other domains. For this reason, we

take a different approach and limit our analysis to the external behavior of the search

procedure.

As pointed out at the beginning of Section 5, the early phase of a SA run, where

temperature is still high, generally determines whether the procedure gets caught in a

local minimum or not. Different neighborhood structures for a same class of problem

can possibly lead to different types of local minima. The nature of these local minima

can in turn affect the effectiveness of different problem decompositions in the FSA

procedure. In Figure 12, we analyze cost reductions in different types of subproblems

during the lower temperature phase of the original SA procedure. Specifically, Figure

12 considers improvements in three different types of subproblems:

1. CJ: the set of critical jobs that would be identified by FSA(CJ) at T = 100

2. BR: the critical ("bottleneck") resource that would be used by FSA(BR) at T =

100

3. CO: the set of critical operations that would be considered by FSA(CO) at T =

100

23

cost

1.00

0.95-

0.90

0.85

0.80-

Temp.
100

Fig. 12 Changes of Cost in the Later Stage of SA

For each of these subproblems, Figure 12 plots the average variation in cost as-

sociated with these 3 subproblems as the temperature in the original SA procedure

is progressively lowered. The curve labeled " Totaf plots the cost variations of the

overall schedule as temperature decreases. The points in Figure 12 represent averages

taken over the set of 40 problems studied in Section 6 and over 10 runs of SA on each

problem.

Figure 12 indicates that, when using the original SA procedure, major inefhciences

in job schedules do not get corrected below temperature T = 100, while major ineffi-

ciencies at the level of critical resources or critical operations are still easy to eliminate.

This explains why FSA(CJ) is the variation that performs best: it is the one that best

matches the weaknesses of the original SA procedure. By working hard on eliminat-

ing inefficiencies at the level of critical jobs, FSA(CJ) reduces the chances that such

inefficiencies remain when the procedure reaches its lower temperature phase, a phase

when it is no longer effective at getting rid of these inefficiencies. For the same reason,

the BR curve suggests that FSA(BR) wastes its time getting rid of inefficiencies that

are still easy to eliminate in the lower temperature phase of the procedure, and hence

can be expected to perform poorly, as observed in the results presented in Section 6.

24

8 Summary and Concluding Remarks

In summary, the contribution of this work is twofold:

1. On the scheduling front, a SA procedure has been developed to solve job shop

scheduling problems with both tardiness and inventory costs. The procedure has

been shown to produce high quality solutions, reducing schedule cost by 28% over

a combination of 39 well-regarded dispatch rules and release policies (and by 20%

when the dispatch schedules are post-processed for optimal idle time insertion),

though at the expense of significant computational efforts.

2. To reduce the computational requirements of this procedure, a meta-heuristic

search procedure called Focused Simulated Annealing (FSA) search has been

developed. This procedure aims at reducing variability in the performance of SA

by dynamically focusing on the elimination of major inefficiencies in the solution.

The procedure works by dynamically inflating the costs associated with critical

subproblems and requires a decomposable objective function.

Three variations of FSA have been developed for the job shop scheduling problem

with tardiness and inventory costs. These variations of the procedure differ in the

type of subproblems they rely on: job subproblems, resource subproblems, or op-

eration subproblems. Experiments show that, with the right decomposition, FSA

can significantly improve solution quality especially on problems where search is

likely to get caught in local minima. Equivalently, for the same solution quality,

FSA can greatly reduce computation time over a regular SA search.

Our experiments also indicate that the performance of FSA critically depends

on the selection of a good decomposition of the objective function. An analy-

sis suggests that the most effective decompositions are those corresponding to

subproblems whose solutions are particularly difficult to improve during the low

temperature phase of the SA procedure. By focusing on inefficiencies at the level

of these subproblems, FSA can greatly reduce the chance of getting trapped in

local minima.

As is often the case in this type of study, many design alternatives remain to be

explored. Further work will also be required to assess the effectiveness of FSA or

FSA-like meta-heuristics in combination with more sophisticated SA procedures, e.g.

25

procedures incorporating some aspects of Tabu Search [9, 25, 19]. Like Strategic Oscil-

lation [7, 21, 10], FSA can be viewed as implementing a non-monotonic cooling sched-

ule, though selectively, by focusing on dynamically identified subproblems. Strategic

Oscillation could possibly also be exploited to control the value of ß, the parameter

used in our procedure to penalize precedence constraint violations within a job. Other

aspects of Tabu Search such as Target Analysis [8, 15], which, like FSA, adds a term

to the objective function to drive the procedure towards high quality solutions, would

also be worth comparing with and possibly incorporating in the existing procedure.

References

[1] Baker, K.R. "Introduction to Sequencing and Scheduling," Wiley, 1974.

[2] Cerny, V., "Thermodynamical Approach to the Traveling Salesman Problem: An

Efficient Simulation Algorithm," J. Opt. Theory Appl, Vol. 45, pp. 41-51, 1985.

[3] French, S. "Sequencing and Scheduling: An Introduction to the Mathematics of

the Job-Shop," Wiley, 1982.

[4] Fry,T., R. Amstrong and J. Blackstone "Minimizing Weighted Absolute Deviation

in Single Machine Scheduling," HE Transactions, Vol. 19, pp. 445-450, 1987.

[5] Garey, M. R. and Johnson, D. S. "Computers and Intractability: A Guide to the

Theory of NP-Completeness," Freeman and Co., 1979

[6] Garey M.R., R.E. Tarjan, and G. T. Wilfgong, "One-Processor Scheduling with

Symmetric Earliness and Tardiness Penalties," Mathematics of Operations Re-

search, Vol. 13, No. 2, pp. 330-348, 1988.

[7] Glover, F. "Heuristics for Integer Programming Using Surrogate Constraints,"

Decision Sciences, Vol. 8, No. 1, pp. 156-166, January 1977.

[8] Glover, F. "Future Paths for Integer Programming and Links to Artificial In-

telligence," Computer and Operations Research, Vol. 13, No. 5, pp. 533-549,

1986.

[9] Glover, F. "Tabu Thresholding: Improved Search by Non-Monotonic Trajecto-

ries," Technical Report, Graduate School of Business, University of Colorado,

Boulder, Colorado 80309-0419, 1993.

26

[10] Glover, F. and M. Laguna "Tabu Search," Chapter in Modern Heuristic Tech-

niques for Combinatorial Problems, pp. 70-150, Colin Reeves (Ed.), Blackwell

Scientific Publications, Oxford, 1992

[11] Holland J. "Adaptation in Natural and Artificial Systems" University of Michigan

Press, Ann Arbor, MI. 1975.

[12] Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C. "Optimization

by Simulated Annealing: Experimental Evaluation; Part I, Graph Partitioning"

Operations Research Vol. 37 no. 6, pp. 865-892, 1989

[13] Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C. "Optimization

by Simulated Annealing: Experimental Evaluation; Part II, Graph Coloring and

Number Partitioning" Operations Research Vol. 39 no. 3, pp. 378-406, 1991

[14] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., "Optimization by Simulated

Annealing," Science, Vol. 220, pp. 671-680, 1983.

[15] Laguna M. and F. Glover "Integrating Target Analysis and Tabu Search for

Improved Scheduling Systems," Expert Systems with Applications, Vol. 6, pp. 287-

297, 1993.

[16] Matsuo H., C.J. Suh, and R.S. Sullivan "A Controlled Search Simulated Annealing

Method for the General Jobshop Scheduling Problem" Tech. Report, "Dept. of

Management, The Univ. of Texas at Austin Austin, TX, 1988.

[17] Morton, T.E. "SCHED-STAR: A Price-Based Shop Scheduling Module," Journal

of Manufacturing and Operations Management, pp. 131-181, 1988.

[18] Morton, T.E. and Pentico, D.W. "Heuristic Scheduling Systems," Wiley Series

in Engineering and Technology Management, 1993

[19] Nowicki E. and C. Smutnicki "A Fast Taboo Search Algorithm for the Job Shop

Problem," Technical University of Wroclaw, Institute of Engineering Cybernetics,

ul. Janiszewskiego 1/17, 50-372 Wrocklaw, Poland, 1993.

[20] Osman,I.H., and Potts, C.N., "Simulated Annealing for Permutation Flow-Shop

Scheduling," OMEGA Int. J. of Mgmt Sei., Vol. 17, pp. 551-557, 1989.

27

[21] Osman, I.H. "Meta-Strategy Simulated Annealing and Tabu Search Algorithms

for the Vehicle Routing Problem" Annals of Operations Research, Vol. 41, pp. 421-

451, 1993.

[22] Ow, P.S. and T. Morton, "The Single Machine Early/Tardy Problem" Manage-

ment Science, Vol. 35, pp. 177-191, 1989.

[23] Sadeh, N. "Look-ahead Techniques for Micro-Opportunistic Job Shop Scheduling"

Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA 15213, March 1991.

[24] Sadeh, N. "Micro-Opportunistic Scheduling: The Micro-Boss Factory scheduler"

Ch. 4, Intelligent Scheduling, Zweben and Fox (Ed.), Morgan Kaufmann Publish-

ers, 1994.

[25] Taillard, E. "Parallel Taboo Search Technique for the Job Shop Scheduling Prob-

lem," ORSA Journal on Computing, Vol. 6, pp. 108-117, 1994.

[26] Van Laarhoven, P.J., Aarts, E.H.L., and J.K. Lenstra "Job Shop Scheduling by

Simulated Annealing," Operations Research, Vol. 40, No. 1, pp. 113-125, 1992.

[27] Vepsalainen,A.P.J. and Morton, T.E. "Priority Rules for Job Shops with Weighted

Tardiness Costs," Management Science, Vol. 33, No. 8, pp. 1035-1047, 1987.

Appendix A: Idle Time Insertion as a Linear Program

The problem of optimally inserting idle in an existing job shop schedule (i.e. given

completely defined operation sequences on each resource) can be formulated as a linear

program, as detailed below:

nj—1

MIN Y,itardi ■T' + £ [inv'i • (54i - **!•)] + invlm • (du». + e<)} (1)

such that:

28

Ti-ti- stlni = dul
ni -ddi 1 = 1, ...,n (2)

st\ - stli+1 < -du\ / = l,...,n z' = l,...,n/-l (3)

,up(k,j) ,up(k,j+l) < ,up{Rk,i) , _ 1 • _ 1 _ 1 (A\
Stlow{k,j) Sllow(k,j+l) ^ aUlow(k,j) K-l,...,m J-l,...,Pfc i (4J

r/ ,e/ > 0 / = l,...,n (5)

.si^ > erdi l = l,...,n (6)

**»! <lcdi-du'ni / = l,...,n (7)

where:

• 77 is the tardiness of job j/

• e/ is the earliness of job ji

• Oj^r'kfi is the j-th operation scheduled on resource Rk (in the given schedule).

In other words, up(k,j) is the index of the job to which this opeation belongs

and low(k,j) the index of this operation within its job

• pk is the number of operations requiring resource Rk

• The other notations are as defined in Section 2

Note that, in Equation (2), when job ji is tardy, r\ — stlni + dul
ni — ddt > 0 and

e; = 0, and, when it is early, t\ = ddi — (stlni + dul
ni) > 0 and 77 = 0. A similar

formulation was first proposed by Fry et al. for the one-machine early/tardy problem

[4]. While more efficient procedures are described in the literature for the one-machine

early/tardy problem, including an O(NlogN) procedure developed by Garey et al. [6],

it is not clear at this time how these procedures could be efficiently generalized to the

job shop case.

Appendix B: Results Obtained Under Different Parameter
Settings

This appendix summarizes results obtained with FSA for different values of the follow-

ing four parameters:

29

• T2: temperature above which FSA artificially inflates the costs of critical sub-

problems. The results in Table 3 were obtained using FSA(CJ), the variation

of FSA that performed best in our experiments. In these experiments, k = 2 and

p = 3.

• k: the parameter by which FSA inflates the costs of critical subproblems. The

results in Table 4 were obtained using FSA(CJ), the variation of FSA that

performed best in our experiments. In these experiments, T2 = 50 and p - 3.

• p: the parameter used by FSA(CJ) to identify critical jobs. Results obtained

with different values of this parameter are summarized in Table 5. In these

experiments, T2 = 50 and k = 2.

• q: the parameter used by FSA(CO) to identify critical operations. Results

obtained with different values of this parameter are summarized in Table 6. In

these experiments, T2 = 50 and k = 2.

More detailed definitions of these parameters are provided in Section 5. The tables

below report both average and best performance of FSA over 10 runs.

The best results are generally obtained for T2 = 50, k = 2, p = 3 and q = 3, the

values used in the experiments reported in Section 6.

30

Table 3 Percentage performance improvement(+)/degradation(-) observed

when running FSA(CJ) with different values of T2. Performance with

T2 = 50 is used as the reference.

Problem

Set

Best Performance Average Performance

T2 = 25 r2 = 50 T2 = 100 T2 = 200 T2 = 25 T2 = 50 T2 = 100 T2 = 200

1 -2.3 0.0 -7.7 -3.5 -2.4 0.0 -1.2 -0.2

2 -0.3 0.0 3.3 1.6 0.8 0.0 0.2 -4.1

3 -2.3 0.0 0.5 0.0 -2.4 0.0 -0.5 1.3

4 -3.7 0.0 -1.6 -0.9 -2.5 0.0 -0.7 0.7

5 -1.2 0.0 0.0 0.8 -0.1 0.0 -2.6 -1.2

6 -1.8 0.0 2.5 -0.5 -1.1 0.0 1.4 1.7

7 -0.6 0.0 -1.2 -4.0 -3.6 0.0 -0.1 -0.4

8 -2.1 0.0 -5.6 -6.8 -0.4 0.0 0.7 2.8

Overall -1.8 0.0 -1.2 -1.7 -1.5 0.0 -0.4 0.1

31

Table 4 Percentage performance improvement(+)/degradation(-) observed

when running FSA(CJ) with different values of k. Performance with k = 2

is used as the reference.

Problem

Set

Best Performance Average Performance

k = l k = 2 Jb = 3 k = i fc = l Jfe = 2 & = 3 k = A

1 -3.8 0.0 -4.4 -0.3 1.0 0.0 0.8 0.1

2 -0.2 0.0 -1.2 -2.0 1.3 0.0 0.0 -1.3

3 -1.9 0.0 -2.6 3.2 -2.2 0.0 1.6 1.5

4 -2.2 0.0 -3.4 -3.6 0.4 0.0 -2.4 -1.1

5 -3.6 0.0 -2.8 -0.5 -1.1 0.0 -4.2 -12.1

6 -0.3 0.0 2.5 -0.9 -1.1 0.0 -2.4 -1.8

7 2.9 0.0 -5.2 2.1 3.2 0.0 0.1 -3.1

8 -3.6 0.0 -2.1 -5.0 2.9 0.0 3.0 2.5

Overall -1.6 0.0 -2.4 -0.9 0.6 0.0 -0.4 -1.9

32

Table 5 Percentage performance improvement(+)/degradation(-) observed

when running FSA(CJ) with different values of p. Performance with p = 3

is used as the reference.

Problem

Set

Best Performance Average Performance

p = l p = 2 p = 3 p = 4 p=l p = 2 p = 3 p = 4

1 -2.4 -1.6 0.0 0.3 0.6 1.8 0.0 -2.7

2 1.1 1.6 0.0 -1.7 2.2 1.2 0.0 -4.7

3 1.3 -1.0 0.0 -1.8 0.0 -0.6 0.0 0.9

4 1.2 1.2 0.0 3.7 -1.7 -1.3 0.0 2.5

5 -1.0 -4.1 0.0 -1.8 -32.1 -14.9 0.0 -0.2

6 2.3 1.0 0.0 -2.6 2.0 1.6 0.0 -0.4

7 -1.4 1.3 0.0 -3.1 -7.6 -2.7 0.0 0.4

8 -3.7 -2.2 0.0 -4.0 -5.2 2.1 0.0 1.6

Overall -0.3 -0.5 0.0 -1.4 -5.2 -1.6 0.0 -0.3

33

Table 6 Percentage performance improvement(+)/degradation(-) observed

when running FSA(CO) with different values of q. Performance with q = 3

is used as the reference.

Problem

Set

Best Performance Average Performance

q = l q = 2 q = 3 q = A q = l q = 2 q = 3 q = 4

1 0.7 0.5 0.0 1.0 -0.8 0.8 0.0 -1.6

2 -1.7 -1.2 0.0 -2.6 0.4 0.8 0.0 -0.5

3 2.7 3.9 0.0 2.3 2.4 1.1 0.0 1.1

4 -3.6 -3.7 0.0 -8.4 -0.2 -0.4 0.0 -3.5

5 2.7 0.2 0.0 1.3 -17.3 -6.9 0.0 1.3

6 -4.7 1.2 0.0 1.5 -2.4 0.9 0.0 1.8

7 1.6 1.7 0.0 0.5 -2.8 0.1 0.0 0.8

8 -1.0 1.5 0.0 1.8 -5.2 -1.8 0.0 1.6

Overall -0.4 0.5 0.0 -0.3 -3.2 -0.7 0.0 0.1

34

